
	
 	
 	

	

	

FRONT	
 PAGE	
 FLYLEAF	

	

	

	

ABSTRACT

Keywords: malware, automation, software, OSI, triage

 This paper discusses the creation of a software tool called the Suspicious File

Triage Tool, or SFTT. SFTT assists in the collection of open source intelligence related

to suspicious files. The tool gathers information from the Internet and sources compiled

by the user. SFTT is being created in response to the tremendous growth in the amount of

malware and also its rapid evolution. It is meant to complement the other software tools

used for malware analysis that exist and to free the malware analyst for tasks that require

creativity and expertise. SFTT strives to prevent information leakage by not uploading

files to external services.

 The functionality of the core framework and some example plug-ins are laid out

in detail and shown to be implementable. Plug-ins to access the external services

VirusTotal and ThreatExpert and a plug-in to perform ssdeep hash comparisons against a

list of file hashes are described. Some limitations of the SFTT are also described. One is

issues with external services breaking or changing terms of use. Another is the possibility

of information leaking even with steps taken to minimize such risks.

 SFTT can be enhanced by developing new plug-ins and changing the core

structure of the tool to meet new requirements. Designing the tool to be used as a web

service and adding alternate output formats like PDF and XML will make the tool easier

to access and its data more useful. SFTT can be modified to integrate tightly into an

existing automation framework to increase efficiency. Plug-ins to use anti-virus virtual

machines and malware analysis software supplied by the user address most information

leakage issues.

	

	

	

DEVELOPING A SUSPICIOUS FILE TRIAGE TOOL

By

D. Kevin Stilwell Jr.

A Capstone Project Submitted to the Faculty of

Utica College

March 18, 2012

In Partial Fulfillment of the Requirements for the Degree

Master of Science Cybersecurity – Intelligence and Forensics

	

	

	

Copyright by D. Kevin Stilwell Jr., 2012

	

	

	

v	

TABLE OF CONTENTS
	

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

ACKNOWLEDGMENTS ... x

STATEMENT OF THE PROBLEM ...1

SFTT Design and the RegRipper Tool ...1

	
 	
 	
 	
 The Malware Problem ..3

 Quantity and Complexity ...4

Software Tools & Malware Investigation ..5

LITERATURE REVIEW ...7

Goals of SFTT ..7

	
 	
 	
 	
 SFTT Design ..8

 Goals of Literature Review ..8

SFTT and Open Source ..9

What is open source? ..9

Open Source Definition criteria ..9

SFTT license ...10

Why an open source license? ...10

Malware ..11

What is malware? ...11

How is malware installed? ..11

Types of malware ...12

Uses of malware ...13

 The Growing Threat of Malware ..13

The growth of malware ..13

The impact of malware ...14

Malware in the News ..14

Operation Aurora ..14

	

	

	

vi	

Stuxnet ..15

Koobface ...15

 Malware Analysis ..16

 Dynamic Analysis ..17

Dynamic analysis preparation ..17

Using virtual machines in dynamic analysis ..18

 Static Analysis ...18

 Cryptographic Hashes ..19

Cryptographic hashing tools ...20

 Virus Scanning ...23

Virus scanning tools ...23

 Malware Analysis Workflow ...24

A typical malware analysis workflow ..24

 Malware Anti-Analysis Strategies ...27

Malware Analysis Tools and the Daubert Test ..28

Testing ..29

Error rate ...30

Publication ..30

Acceptance ...31

SFTT Alternatives ..31

Counterintelligence and controlling information ...31

Online file scanning services ..32

Unintentional information disclosure examples ...32

Disadvantages of online file scanning services ..33

 Conclusions ..33

DISCUSSION OF THE FINDINGS ..35

 Problem Synopsis ..35

	

	

	

vii	

 Literature Review Synopsis ...36

 SFTT in Relation to the Literature Review ..37

 SFTT Core Framework Design ..39

SFTT prerequisites ...39

SFTT structure ..39

SFTT functionality ...42

 SFTT Plug-ins ..43

Plug-in API ...44

 SFTT Initial Plug-in Descriptions ..44

Ssdeep plug-in ..45

Virustotal plug-in ..45

Threatexpert plug-in ...46

 SFTT Limitations ...46	

RECOMMENDATIONS AND CONCLUSIONS ...48

Recommendations ..48

User interface improvements ..48

Standardized output formats ...48

Automated processing ..48

New SFTT Plug-ins ..49

Implement SFTT ..49

 Conclusions ..50

Appendix A SFTT Command Line Options ..54

Appendix B SFTT Examples of Usage ...55

Appendix C SFTT Plug-in API ...56

Appendix D SFTT Glossary ..57

Appendix E BSD 3-Clause License Template ...62	

	

	

	

	

viii	

LIST OF FIGURES

 Figure 1 Sample Malware Analysis Workflow………………………………………………...26

Figure 2 SFTT sftt_config.xml…………………………………………………………………41

Figure 3 SFTT sftt_logging.conf…………………………………………………………….....42

Figure 4 Ssdeep Plug-in Configuration………………………………………………………....44

Figure 5 Virustotal Plug-in Configuration…...………………………………………………....46

	

	

	

ix	

LIST OF TABLES

Table 1 Types of Malware……………………………………………………………………..12

Table 2 AV Comparatives Test Results………………………………………………………..22

Table 3 SFTT File Layout……………………………………………………………………. 40

Table 4 Perl Modules Used in SFTT Core Framework………………………………………..43

Table 5 Summary of Recommendations………………………………………………………50

Table 6 Summary of Conclusions……………………………………………………………...52

	

	

	

x	

ACKNOWLEDGMENTS
`

I would like to thank my family, especially my wife Allison, for their understanding and

encouragement.

I would also like to thank Professor Randall K. Nichols and Professor Vernon

McCandlish for their feedback, ideas, and availability. Their mentorship was instrumental is

conceiving and executing this paper and any positive qualities contained within bear their mark.

	
 	
 	

1	

	

STATEMENT OF THE PROBLEM

 This paper will discuss the creation of a proof of concept (POC) tool called

Suspicious File Triage Tool (SFTT) which will provide automated file triage to a

malware analyst. SFTT will focus on gathering open source intelligence (OSI) related to

suspicious files. OSI for this POC tool development includes information from the

Internet and information compiled in previous investigations by the tool’s user.

SFTT will be a plug-in based tool. These plug-ins will take the form of

programmatic library files that implement a specific set of documented functions

expected by SFTT. Some example plug-ins will be initially developed and discussed in

this paper. These plug-ins will be of sufficient technical capability to verify the POC. It is

expected that new plug-ins will be added in the future.

SFTT Design and the RegRipper Tool

 The author, in creation of SFTT, was significantly influenced by the design of the

RegRipper software tool. Harlan Carvey wrote RegRipper in 2008. RegRipper can be

run from the command line on Windows (Carvey, 2011, p. 176) and on Linux and Mac

OS X platforms with minimal modifications (Jeffbryner, 2009). It is easy to run on both

32-bit and 64-bit versions of Windows because a graphical user interface is available and

the tool is provided as executable binary files for those platforms (Carvey, 2011, pp. 173-

174). The creation of the executable files is accomplished using the Perl2Exe tool from

IndigoStar (“Perl2Exe Home Page”, n.d.). As of the writing of this paper RegRipper can

be downloaded from the winforensicsanalysis Google Code page (“winforensicsanalysis

	

	

	

2	

Downloads”, n.d.) and user contributed plug-ins can be downloaded from the

regripperplugins Google Code page (“regripperplugins Downloads”, n.d.).

The purpose of RegRipper is to extract and correlate data from Windows

Registry files (Carvey, 2011, pp. 174). The use of the “Parse: Win32Registry” library

allows for parsing of registry files. A single plug-in or a custom list of plug-ins can be

provided to RegRipper to be run against a registry file (Carvey, 2011, pp. 175).

Information from each plug-in is output in a plain text format (Carvey, 2011, pp. 173).

The RegRipper tool works in a plug-in based framework. It was designed to be

interchangeable and upgradeable so that new functions could be written and easily

integrated with the core tool (Carvey, 2011, p. 173).

 RegRipper was written in the Perl scripting language (Carvey, 2011, p. 175).

SFTT will also be written in this language. An advantage of using Perl is the existence of

the Comprehensive Perl Archive Network that provides access to thousands of modules

that make adding functionality easier (“CPAN Frequently Asked Questions”, n.d.).

 RegRipper provides both a GUI and command line interface to its functionality

(Carvey, 2011, pp. 173-174). For the initial release, SFTT will only provide a command

line interface to access its functionality. Command line tools can easily be integrated into

a larger automation command flow system to minimize mistakes and to standardize the

performance of certain actions (Ayers, 2009).

 One security priority of SFTT development is to minimize the risk of information

leakage. No possible discovered malware should be released to third parties unless that is

the specific intention. A specific real-world example of this issue is the RSA data breach

in 2011. A great deal of information was discovered about the specifics of the attack

	

	

	

3	

because the malware used in the compromise was submitted to VirusTotal (Hyponnen,

2011). None of the provided plug-ins will expose files processed by SFTT directly to any

Internet sites. Information will be gathered based on file metadata and not by uploading

the file to any services.

In addition SFTT will support the use of proxies. A proxy sits between two

computers over a network and routes traffic between them. For the purposes of this tool a

proxy would be used to hide the users IP address (“Proxy.org”, n.d.). Tools like whois

can be used to determine the owner of a particular IP address and a general idea of their

geographic location (“How to use WHOIS effectively to track spammers,” n.d.).

 Another priority of SFTT development is implementing comprehensive logging

of all tool activity. Providing such information to the malware analyst allows for a greater

understanding of what specific actions are being performed by the tool (Ayers, 2009).

Source code will be made available under an open source license, specifically the

BSD 3-Clause License. Providing SFTT as an open source tool will maximize the

opportunities for those that might use the tool to contribute back to the functionality of

the tool in the form of new plug-ins.

The Malware Problem

According to a report issued by Panda Labs (2011) more than five million new

malware strains were created from July to September of 2011. Malware has begun to

target mobile phones running the iOS and Android operating systems. Further, malware

programs target minority computing platforms like Mac OS X laptops and desktops.

Social networks like Twitter and Facebook have become significant malware vectors. A

	

	

	

4	

malicious website is a website hosting or associated with hosting malware, potentially

unwanted programs, or phishing sites, according to McAfee (2011). More than 6,500 new

malicious websites a day were discovered in the third quarter of 2011. While spam

volumes as of 2011 are down to 2007 levels the incidents of targeted spam attacks or

“spear-phishing” have risen dramatically. In short, malware can be found in nearly all

computing devices, the amount of malware is growing rapidly, and as one malware

vector decreases in importance another one rises to take its place.

A report by Cisco (2011) details that global Internet traffic has had an eight-fold

increase since 2005 and is predicted to increase an additional four-fold by 2015. A large

amount of the new traffic is Internet video, which is predicted to exceed 50% of

consumer Internet traffic in 2012. Many of the new devices generating this traffic are

non-PC devices. If these trends continued it was predicted that devices would outnumber

humans sometime before the end of 2011 (Cisco, 2011). Many of these new devices are

vulnerable to malware. Internet router devices that use the MIPS operating system have

been targeted by malware that can propagate itself through default passwords and can be

used to perform distributed denial of service attacks (Janus, 2011). These sorts of devices

are everywhere and are not generally considered as targets of malware by the general

population and many system administrators (Janus, 2011).

Quantity and Complexity

 This deluge of information and malware forces investigators to have to process

large amounts of data in investigations (Schatz, 2007). In many cases this data can reach

sizes of multiple terabytes (Schatz, 2007). This is referred to as the Quantity Problem

	

	

	

5	

(Carrier, 2003; Schatz, 2007). This is further complicated by network effects, which can

scatter evidence across multiple devices in disparate locations (Schatz, 2007). New

sources of data from software and hardware complicate analysis by requiring new

techniques for processing (Schatz, 2007). It takes significant effort and knowledge to

comprehend this data. Not all computer forensic analysts can be expected to overcome

such barriers (Carrier, 2003). This is referred to as the Complexity Problem (Carrier,

2003; Schatz, 2007).

Software Tools & Malware Investigation

According to Carrier (2003), a key part of addressing these challenges is through

the use of software tools. Tools can help with the Quantity Problem by assisting in the

filtering out of data that is already known or grouping related data into a single unit.

Tools can also help with the Complexity Problem by translating data through one or more

abstraction layers (Carrier, 2003).

 Both the Quantity Problem and the Complexity Problem effect malware

investigations. The amount of malware that exists continued to grow exponentially

through 2011 and this is likely to continue through 2012 (Cordons, 2011). New malware

has shown an ever-increasing amount of sophistication. As an example web malware has

begun to recognize connections from anti-malware web bots like Google’s and Yahoo’s

and will not deploy if it identifies those connections (Krebs, 2010). As in the wider field

of computer forensics, software tools help to address these issues when investigating

malware.

	

	

	

6	

In his introduction to malware analysis Distler (2007) discusses how it is divided

into two main types; static analysis and behavioral analysis. Behavioral analysis looks at

what the malware does as it is installed and executed on a machine while static analysis is

looking at the source code or disassembly of the malware to determine what the

malware’s function.

 Kendall (2007) lists techniques used in static and behavioral analysis of malware

in his discussion of how to perform malware analysis. Behavioral analysis of malware

includes tools used to monitor file(s), process, and registry activity while testing malware

to examine activity in these areas. To examine network related activity due to malware

software tools can capture and analyze network traffic.

Acquiring cryptographic hashes of files allows for any modifications made to the

file to be detected later and also allows for matches to be found against other files with

different names and extensions. Software tools can be used to check if an executable has

been compressed, obfuscated, or both and can also extract ASCII and Unicode strings

from a binary for analysis. SFTT will be a static analysis tool that will use similar

techniques in the initial plug-ins developed for it (Kendall, 2007).

The main audience for this paper includes individuals who perform malware

analysis. In developing SFTT the malware analysis process will become more productive

by automating the repetitive parts of an investigation. This will allow the malware analyst

to be able to focus on work that requires human creativity and intuition (Zeltser, 2010). In

addition this paper may educate malware analysts to new tools.

	

	

	

7	

LITERATURE REVIEW

 The purpose of this paper is to develop a proof of concept tool to support the

gathering of open source intelligence related to a file, application, or anything that could

be construed as malware. This open source intelligence may be gathered from the

Internet or from information already compiled by the user of the tool. The tool will be

called the Suspicious File Triage Tool (SFTT).

A malware analyst or incident responder would use this tool during the initial part

of a malware investigation. The output from this tool will help the analyst to determine if

a file is malware or not. This information will help to determine what subsequent steps

should be taken in the investigation.

Goals of SFTT

When designing SFTT the first goal was to automate specific actions associated

with malware investigations. In doing so, the malware analyst will be able to focus on

other parts of the malware analysis process that requires human creativity and skill to

perform (Zeltser, 2010).

Another important design goal for this tool is minimizing any difficulty in

verification of the tool output. Comprehensive logging of all output generated and actions

taken by the tool will be provided. These logs assist the malware analyst in validating the

results of the tool (Ayers, 2009).

Lastly, it was important for this tool to minimize the possibility of exposing

information during its use that could be detected by adversaries. Any file processed by

SFTT will not be directly released to any third parties and only file metadata like its

	

	

	

8	

cryptographic hash or name will be sent over the network. Supporting the use of network

proxies will allow SFTT to hide its point of origin on the network.

SFTT Design

SFTT is significantly influenced by the design of the RegRipper tool. RegRipper

was developed by Harlan Carvey in 2008 and extracts and correlates data from Windows

Registry files (Carvey, 2011, p. 175).

One key feature of RegRipper that is relevant for SFTT is the plug-in based

architecture. This makes it possible for additional functionality to be added to the core

tool in the future (Carvey, 2011, p. 173). Also like RegRipper, SFTT will have a well-

defined command line interface. This minimizes errors and standardizes performance by

integrating the tool into a larger automation solution (Ayers, 2009). Having a command

line interface also allows for easy integration regardless of how tools being interfaced

with it are developed.

SFTT will also have its source code provided under an open source license. The

intent of providing the code under this type of license is to increase of likelihood that

users of SFTT will contribute plug-ins that provide further functionality for the tool.

Goals of Literature Review

 This review will examine malware related background literature. It will then

examine the current state of malware and where this tool would be useful in analyzing it.

Sources related to development, functionality of the SFTT tools, and creation of

automated tools (particularly those related to computer forensic analysis) will also be

	

	

	

9	

explored. In addition the legal implications and issues with using automated tools will be

examined.

 It should be noted that many of the sources discussed in this review are web log

posts and white papers. Generally these types of sources are considered less reliable than

academic and printed resources due to a higher instance of bias and a lower barrier of

entry to present information, among other factors (Driscoll & Brizee, 2010). Despite the

disadvantages, these resources will be used in this paper. During this review it was noted

that authors, like Harlan Carvey (Carvey, n.d.) and Lenny Zeltser (Zeltser, n.d.)

maintained blogs where they discussed cutting edge development of tools and techniques

related to the fields of computer forensics and malware analysis. Information can be

found in these references that do not exist in academic sources.

SFTT and Open Source

 What is open source? In 1998 the Open Source Definition was created by the

Open Source Initiative (Raymond, 2004). The notion of freely sharing code along with an

application had existed for a long time before this, but the ideas and goals of doing so had

not been written into a standard. Doing so allowed the concept to be protected from

intentional or unintentional misinterpretation. According to the Open Source Definition

for a program to be considered open source its license has to meet certain criteria.

 Open Source Definition criteria. An open source license has to allow free

redistribution. This means that the license cannot prevent software from being distributed

in a bundle of other software and cannot require a royalty or fee for distribution. It also

	

	

	

10	

has to make the source code available. The available source code cannot make

understanding or modification of it difficult (“The Open Source Definition”, n.d.).

 The creation of new works using source code licensed under an open source

license must be allowed and the open source license cannot discriminate against any

groups or professions, such as genetic research. Additional licenses not distributed with

the software cannot be required. The license cannot restrict use of source code outside of

a particular product or distribution and it cannot depend or insist on a particular

technology or interface, such as a GUI popup to accept the license (“The Open Source

Definition”, n.d.).

 SFTT license. SFTT will be licensed under the BSD 3-Clause License. This

license allows modification, redistribution, and usage of the source and binary of the

program. The license must be made available with any source code or binary distribution

using the licensed code and the copyright holders and any contributors’ names cannot be

used in endorsement of products made using the code unless explicit permission is given

(Open Source Initiative, n.d.). This license was chosen to maximize the freedom to use

and extend the code while also protecting the reputation of those who write and

contribute to the code.

Why use an open source license? One reason that SFTT is being offered under

an open source license rather than as a commercial product is centered on the

development goal for the tool’s use. Many of the planned and potential plug-ins for SFTT

will interact with some sort of external application programming interface on the Internet.

These APIs have policies concerning commercial usage that differ from non-commercial

usage. For example the public API of VirusTotal is not intended for commercial use. A

	

	

	

11	

private API is available, but that requires negotiation with VirusTotal to determine

pricing (“Virustotal FAQ”, n.d.).

 Another reason to use an open source license is to allow the tool creator and those

who contribute to build a reputation in the field of malware analysis and forensics.

Releasing open tools to a community of interest can have a positive impact, such as

opening new employment avenues for contributors (Raymond, 2001). The creator of

RegRipper, Harlan Carvey, has benefited from his contributions to the computer

forensics community through name recognition. It is also possible to profit from

payments from third parties to write or modify the tool (Raymond, 2001).

Open source tools also allow money to be made through tool support. Request

Tracker is an issue tracking system that is made available under an open source license.

The company that developed it, Best Practical, provides services such as support and

custom modification of the software at a price (“Best Practical Services”, n.d.).

Malware

 What is malware? According to Skoudis & Zeltser (2004) malware is malicious

code from an attacker that runs on a computing device. This code acts beyond the control

of the device’s user to perform actions beneficial to the attacker. Some software may be

considered malware depending on its usage, such as a remote access tool that could be

used legitimately or maliciously (O’Connor, 2010).

How is malware installed? The Organization for Economic Cooperation and

Development (OECD) (2008) in their report on malware describe ways that malware can

be installed on a particular computer. A user could be fooled into clicking a link in an

	

	

	

12	

email or instant message that installs malware. It is also possible that security flaws in an

operating system or other installed software could allow malware to be installed without

direct user interaction.

Computers in both government and business are under attack constantly. Many

commercial institutions experience over fifty thousand attacks per day and in 2008 the

Pentagon experienced six million attempted intrusions in a twenty-four hour period

(O’Connor, 2010). Any successful attack could install malicious software.

Table 1 Types of Malware

Type of Malware Important Characteristics

Virus Infects a particular file on a device. Requires manual

intervention to replicate on a device such as launching an

executable file

Worm Can spread across a network without manual intervention.

Trojan horse Appears to be a legitimate application such as a game but

actually does something malicious.

Rootkit User-level rootkits replace or modify standard system

executables to hide malicious activity or create backdoors.

Kernel-level rootkits modify the core of the operating system

(kernel) for the same purpose.

Malicious Mobile Code Smalls programs that are downloaded from remote locations

and execute without the permission of the user.

Skoudis, E. & Zeltser, L. (2004). Malware: Fighting Malicious Code

 Types of malware. Malware is classified into different types based on its

characteristics. Skoudis & Zeltser (2004) classify malware as viruses, worms, Trojan

	

	

	

13	

horses, malicious mobile code, or rootkits. Information about these classifications can be

found in Table 1 on page 12. Note that malware can be combined to perform a certain

task or to increase its effectiveness. A Trojan horse could have an embedded rootkit that

is deployed when it is executed by a user.

 The OECD report talks about a type of malware called a bot. A bot is a type of

malware that is generally deployed to a target computer via one of the other types of

malware and is designed to participate in concert with a larger group of computers. This

larger group of computers is called a botnet. Botnets allow an attacker to easily control a

large group of devices, often for malicious purposes.

 Uses of Malware. OECD describes several ways in which malware is used by an

attacker. Malware often steals and transmits information from a device to the attacker.

This information can include personal data like credit card numbers and passwords.

Malware targeted at a specific corporation or government may steal classified or

proprietary information. Botnets are often used to commit distributed denial of service

attacks in which bots send queries to a target and take the target off the network for an

extended period of time.

The Growing Threat of Malware

 The growth of malware. The amount of observed malware has grown at an

incredible rate. According to Panda Labs (2011) 34% of all malware that has ever existed

was created and classified in 2010. This amounts to over twenty million pieces. While in

the past malware was active for several months or even years now more than half of new

	

	

	

14	

malware is active for only twenty four hours. Attackers are constantly modifying

malware or creating new variations to avoid detection.

 The Impact of Malware. A survey of computer users reveals that 89% run

security software to protect their computers against malware (G Data, 2011). This shows

a high level of awareness to the threat of malware, but despite this awareness many

computers have been compromised. According to the Anti-Phishing Working Group

(2009), of more than twenty two million computers scanned by Panda Anti-virus Cloud

Scanning service, over 48% had some sort of malware present.

 Malware also remains a significant threat to businesses. Of security professionals

surveyed, 23% reported that their organization had experienced a security breach between

April 2009 and April 2010 (Davis, 2010). Of the security professionals that reported a

security breach, 86% indicated that it involved some type of malware.

Malware in the News

Some stories of malware incidents help to illustrate how malware is impacting

businesses, governments, and regular users.

Operation Aurora: In early 2010 Google reported a targeted attack that affected

nearly thirty large multinational companies. It was called Operation Aurora due to the

string “aurora” being found in one of the malware Trojans involved in the attack (Panda

Labs, 2010). Those targeted were high-level management who received emails inviting

them to click a web link that deployed the malware. The malware took advantage of zero-

day exploits for the Windows Explorer web browser (Panda Labs, 2010).

	

	

	

15	

The attacks appear to have been targeting corporate intellectual property,

especially source code repositories (McAfee, 2010). Google claimed that China was

behind the attack due to one of the source servers connected to by the malware being in

China. The Chinese government denied these accusations (Panda Labs, 2010).

 Stuxnet: In July of 2010 a new worm was discovered that infected computers

through USB devices (Panda Labs, 2010). This is not an unusual method of infection, but

this worm also used four zero-day exploits in the course of its operation, which was

unprecedented. This malware did nothing on infected machines except propagate itself,

unless the machine had a Siemens programmable logic controller (PLC) installed, in

which case the malware used a vulnerability in the PLC to read and write to it (Panda

Labs, 2010). It was named Stuxnet due to keywords found in the code (The Economist,

2010).

 The Stuxnet malware infection rate appeared to be particularly high in Iran and

several nuclear facilities in Iran use the Siemens controllers (Panda Labs, 2010). The

Natanz uranium enrichment centrifuges could have been targeted by Stuxnet by altering

the speeds of the centrifuges, possibly causing damage. The sophistication of Stuxnet has

led to speculation that a government was behind the creation of the malware (Langner,

2010).

 Koobface. Since 2008 the Koobface malware worm has been a significant issue

for computer users. The Koobface name is an anagram of Facebook and this malware

spreads primarily through social networks, particularly Facebook (Villeneuve, 2010).

This was accomplished through links sent from infected users to “friends” in the social

network. These links, if clicked on, redirected to a webpage that encouraged the user to

	

	

	

16	

install some malicious executable (Villeneuve, 2010). In many cases the webpage would

claim to be a flash video site and the executable would claim to be a plug-in that required

watching a video.

 Koobface malware causes the infected machine to become part of a botnet. The

operators of this botnet had infected users enter in the text for CAPTCHAs to automate

the creation of fake websites that helped propagate the malware (Villeneuve, 2010).

Koobface would also steal user credentials and allowed its controllers to collect revenue

when users of infected machines clicked ads or installed fake security software.

Malware Analysis

 Given the quantity and impact of malware that is encountered by private citizens,

businesses, and governments; malware analysis has become an important discipline.

Malware analysis is the examination of malware in all its forms. Those who perform this

job are sometimes called malware analysts or reverse engineers (“Malware Analyst – Job

Description”, n.d.).

 At an anti-virus or network intrusion detection company malware analysis is a

full-time job. Other organizations that are not security focused may still hire full-time

malware analysts as part of a network security team within the organization (“Malware

Analyst – Job Description”, n.d.). Skills in the area of malware analysis are also valuable

in organizations that do not have the resources to hire someone full-time, but require

personnel to perform malware investigation when the need arises (“Malware Analyst –

Job Description”, n.d.).

	

	

	

17	

 As discussed previously, security professionals surveyed indicated that nearly

90% of security breaches involved some sort of malware (G Data, 2011). Malware

analysis is often required to understand the details and severity of a security breach. This

also extends to determining the best response to a breach and identifying the perpetrators

(Zeltser, 2010).

 Malware analysis software and techniques are categorized as either static analysis

or dynamic analysis (Distler, 2007).

Dynamic Analysis

 At a high level, dynamic analysis is determining what happens when a sample is

executed. Details of interest include what kind of network traffic is generated and what

files are added, modified, or deleted on the system. Dynamic analysis is sometimes

referred to as behavioral analysis (Hutcheson, 2006).

 Dynamic analysis preparation. It is possible, and in some cases necessary, to

perform analysis of malware as it is being executed on a victim machine and is capable of

connecting to the attacker’s servers on the Internet. However, there are significant risks

associated with this approach. These include allowing the compromised machine to

continue to propagate or perform malicious actions and communicate with the attacker

(Kendall, 2007).

 Consequently it is ideal to perform dynamic analysis in some sort of controlled

environment. Any machines involved with dynamic analysis should be isolated from both

other machines on the local network and the Internet. This can be accomplished through

configuration or through having malware analysis machines on a physically separate

	

	

	

18	

network (Brunner et. al., 2010). Network services can be simulated to allow for the

malware believing it is connected to a live network. Multiple machines can be used to test

malware (Kendall, 2007). Backup images of these machines allow them to be reverted to

a clean state when malware testing is completed. In many cases virtual machine software

is used either, instead of, or in addition to physical machines (Kendall, 2007).

Using virtual machines in dynamic analysis. Distler (2007) discusses the

advantages of using virtual machines in malware investigations. Several virtual machines

can be run on a single physical machine, which reduces costs. Virtual machine solutions

offer the ability to take snapshots of system state, which can be rolled forward and back

to save considerable setup time between tests. Virtual machines can also easily be

isolated from each other and from the external network.

There are some drawbacks to using virtual machines. The theoretical possibility

of malware exploiting virtual machine software vulnerabilities and escaping to the

physical operating system makes using virtual machines slightly less safe than just using

physical machines, although this risk can be mitigated by isolating the virtual machine

host on the same network as physical machine malware testing (Distler, 2007).

Static Analysis

 In general static analysis is any analysis that can be performed on a piece of

malware without running it. Specifically there are two main areas of static analysis. One

is viewing any source code or scripts of the malware to gain an understanding of malware

function (Hutcheson, 2006). In most cases the source code will not be available and

binary files will have to be disassembled and run through a debugger (Distler, 2007). This

	

	

	

19	

part of static analysis is sometimes called code analysis (Hutcheson, 2006). The other

area of static analysis involves examination of the malware beyond its code or

disassembly. This includes details such as malware location and the size of the executable

and associated files. This part of static analysis is sometimes called visual analysis

(Hutcheson, 2006).

 Static analysis is often the first type of analysis performed in a malware

investigation. One reason for this is that many types of static analysis are quicker to

perform than dynamic analysis and require less preparation. Another reason is that static

analysis is considered to be safer than dynamic analysis. Performing static analysis on a

different operating system than that of which the malware was intended (such as

examining Windows malware on a non-Windows operating system) further minimizes

the risk by greatly reducing the chances of accidentally executing the examined malware

(Kendall, 2007). Note that there have been cases of vulnerabilities found in static analysis

tools that could allow specifically crafted malicious files to install malware on a system

or lock the tool up (“Secunia Advisory SA43910”, 2011.) No malware analysis should

be considered completely safe.

Cryptographic Hashes

 Generating cryptographic hashes of malware files is done as part of static

analysis. These hashes should be those most commonly used by other malware analysts,

which currently are MD5, SHA1, and SHA256 (Kendall, 2007). Cryptographic hashes

can be used to verify file integrity or necessarily modified afterwards. Taking hashes of

	

	

	

20	

tools allow for file integrity verification. Cryptographic hashes also allow for file samples

to be uniquely identified (Kendall, 2007).

Cryptographic hashing tools. There are several tools that can be used to

generate cryptographic hashes. A selection of these tools will be described below.

To generate a hash on a single file, it is the author’s experience that the simplest

tools to use are from the GNU Coreutils family of tools. The names of these tools are

md5sum, sha1sum, and sha256sum (“GNU Coreutils,” n.d.). These will generate a MD5,

SHA1, or SHA256 cryptographic hash of a provided file, respectively. These tools are

generally available by default on Linux systems and can be installed on other operating

systems. Unless scripted using a programming language, generating a hash list of a list of

files or of files in nested directories will require some effort (Altheide & Carvey, 2011, p.

57).

There are tools developed by Jesse Kornblum with additional capabilities beyond

generating a hash for a single file. The tools md5deep, sha1deep, and sha256deep will

iterate through provided directories and generate a list of MD5, SHA1 or SHA256

hashes, respectively (Altheide & Carvey, 2011, p.57). The tool hashdeep processes

directories similar to the above tools. It also adds the ability to generate multiple types of

hashes at the same time and to audit a generated set of hash data. Once a set of hash data

has been initially generated it is possible to run hashdeep again with that data and find out

if files have been added, removed, moved, changed, or remain the same (Altheide &

Carvey, 2011, p. 57).

Kornblum (2006) also created a tool called ssdeep that implements context triggered

piecewise hashing. This type of hashing allows files to be associated even when there are

	

	

	

21	

only minor differences between them and is a useful tool for determining whether two

malware files are variants of one another.

	

	

	

22	

Table 2 AV Comparatives Test Results

	

O
n-­‐
D
em

an
d	

Te
st
	

Fe
br
ua
ry
	
 2
01
1	

Re
tr
os
pe
ct
iv
e	

Te
st
	
 F
eb
ru
ar
y	

20
11
	

Pe
rf
or
m
an
ce
	
 T
es
t	
 (
Su
it
e)
	

	
 Ju
ly
	
 2
01
1	

W
ho
le
	
 P
ro
du
ct
	
 D
yn
am

ic
	
 T
es
t	

Pa
rt
	
 1
	
 (M

ar
ch
-­‐Ju
ne
	
 2
01
1)
	

O
n-­‐
D
em

an
d	

Te
st
	

Au
gu
st
	
 2
01
1	

Re
tr
os
pe
ct
iv
e	

Te
st
	

Au
gu
st
	
 2
01
1	

Pe
rf
or
m
an
ce
	
 T
es
t	
 (
AV
)	

N
ov
em

be
r	
 2
01
1	

Re
m
ov
al
	
 T
es
t	

N
ov
em

be
r	
 2
01
1	

W
ho
le
	
 P
ro
du
ct
	
 D
yn
am

ic
	
 T
es
t	

Pa
rt
	
 2
	
 (A
ug
us
t-­‐N

ov
em

be
r	
 2
01
1)
	

Avast!	
 ADV	
 N/A	
 ADV+	
 ADV+	
 ADV+	
 ADV	
 ADV+	
 STD	
 STD	

AVG	
 STD	
 N/A	
 ADV+	
 STD	
 ADV	
 N/A	
 ADV+	
 STD	
 ADV	

AVIRA	
 ADV+	
 ADV+	
 ADV+	
 ADV	
 ADV+	
 ADV+	
 ADV+	
 ADV	
 ADV	

Bitdefender	
 ADV+	
 ADV	
 ADV	
 ADV+	
 ADV+	
 ADV+	
 ADV	
 ADV+	
 ADV+	

eScan	
 ADV+	
 ADV	
 N/A	
 N/A	
 ADV	
 ADV	
 ADV	
 N/A	
 N/A	

ESET	
 NOD32	
 ADV	
 ADV	
 ADV+	
 ADV+	
 ADV+	
 ADV+	
 ADV+	
 STD	
 ADV	

F-­‐Secure	
 ADV+	
 ADV	
 ADV+	
 ADV+	
 ADV+	
 ADV+	
 ADV+	
 STD	
 ADV+	

G	
 DATA	
 ADV	
 ADV	
 ADV	
 ADV+	
 ADV+	
 ADV+	
 ADV	
 STD	
 ADV+	

K7	
 	
 N/A	
 ADV+	
 	
 	
 N/A	
 ADV+	
 STD	
 STD	

Kaspersky	
 ADV+	
 ADV+	
 ADV+	
 ADV+	
 ADV+	
 ADV+	
 ADV+	
 ADV+	
 ADV+	

McAfee	
 ADV+	
 N/A	
 ADV	
 	
 ADV+	
 N/A	
 ADV	
 STD	
 ADV	

Microsoft	
 ADV	
 ADV	
 N/A	
 N/A	
 ADV	
 ADV	
 ADV+	
 ADV	
 N/A	

Panda	
 ADV	
 ADV	
 ADV+	
 ADV+	
 ADV+	
 ADV	
 ADV+	
 STD	
 ADV	

PC	
 Tools	
 STD	
 N/A	
 STD	
 	
 	
 N/A	
 STD	
 ADV+	
 	

Oihoo	
 360	
 STD	
 	
 ADV	
 ADV	
 ADV	
 ADV	
 STD	
 STD	
 ADV+	

Sophos	
 ADV	
 STD	
 ADV+	
 STD	
 N/A	
 N/A	
 ADV+	
 STD	
 STD	

Symantec	
 ADV	
 N/A	
 ADV+	
 ADV	
 ADV	
 N/A	
 ADV+	
 ADV+	
 ADV+	

Trend	
 Micro	
 STD	
 N/A	
 ADV	
 ADV+	
 ADV+	
 N/A	
 ADV	
 ADV	
 ADV	

TrustPort	
 ADV+	
 ADV	
 N/A	
 N/A	
 ADV	
 ADV	
 STD	
 N/A	
 N/A	

Webroot	
 	
 N/A	
 STD	
 	
 N/A	
 	
 N/A	
 ADV+	
 ADV	
 	

Key	

ADV+	
 ADVANCED+	

ADV	
 ADVANCED	

STD	
 STANDARD	

Grey	
 TESTED	

Grey+N/A	
 Vendor	
 refused	
 to	
 get	
 evaluated	

Black+N/A	
 Vendor	
 did	
 not	
 take	
 part	

AV Comparatives (2011). Summary Report 2011

	

	

	

23	

Virus Scanning

 It is possible that the malware being analyzed is detected by anti-virus software.

Scanning files against as many anti-virus tools as possible can be useful, since some

malware may be detected by only one or two tools (Distler, 2007). Using online virus

scanning services such as VirusTotal provides an easier way of scanning against multiple

anti-virus solutions (Kendall, 2007).

Virus scanning tools. The not-for-profit AV Comparatives (2011) provides a

comparison of different anti-virus solutions annually and their list represents the most

commonly used and known anti-virus vendors. Table 2 on page 22 provides a list of all

the products compared along with test results.

The primary method in which anti-virus software detects malware is through

signature checking. It identifies malware samples through matching them against a

database of known malware signatures, which can be cryptographic hashes or algorithms.

This is the fastest and most accurate detection, but has the disadvantage that unknown

malware will not be detected (Castelli, 2001).

 Another method that anti-virus software can detect malware is through heuristic

analysis. Heuristic analysis covers a wide range of techniques that go beyond signature

matching (Castelli, 2001). It is intended to cover situations where the malware is new

enough that no signature exists. The major disadvantage of heuristics is the occurrence of

false positives, which is when heuristic analysis matches a file that is not malware

(Castelli, 2001).

Static heuristic analysis uses generic signatures that match particular routines or

subroutines commonly found in malware. Dynamic heuristic analysis works by running

	

	

	

24	

the code in some sort of virtual machine to examine behavior and check for indicators

that a file might be malware (Castelli, 2001).

Malware Analysis Workflow

 It is important that an organization have a plan in place for how to respond to

computer security incidents. Having a definitive plan helps to mitigate damage and

decreases costs associated with an incident. It also helps to keep those involved from

going off track and reduces the chances that an important action will be overlooked

(Distler, 2007). Generally malware analysis is part of identifying what has caused an

incident to occur (Distler, 2007).

 A typical malware analysis workflow. When a suspicious file is received for

analysis, a copy of the file is archived for safekeeping and a ticket is opened in some sort

of tracking system. Cryptographic hashes of the suspicious file are generated and used to

determine if any similarity or matches exist with previous known malware files

(Bartolomie, 2011).

 Some basic static analysis is then performed on the suspicious file. This includes

examining header information, determining if the file is compressed or encrypted, and

examining strings in the file. Note that even someone who is not proficient at malware

analysis could perform all steps up to this point. At the end of this basic analysis it will be

determined whether to end the investigation (the file may not be malware) or perform

more advanced analysis (Bartolomie, 2011).

If file examination continues dynamic analysis is performed on either a virtual or

physical machine. File activity and artifacts generated by the file are examined. Code

	

	

	

25	

analysis is then performed against the file. This includes overcoming any obfuscation or

encryption present and then analyzing the disassembly of the file (Bartolomie, 2011).

If the file is determined to be malware and is not detected by the main anti-virus

in use by the organization it will be submitted to that vendor. The malware is not

submitted to the anti-virus software vendor if it is determined to be targeted malware.

Information is entered into the tracking system mentioned above and the ticket is closed

(Bartolomie, 2011).

A visual chart of the described malware analysis workflow can be seen in Figure

1 on page 26. Use of this workflow along with associated automation is estimated to save

thirty to sixty minutes per malware file analyzed (Bartolomie, 2011).

	

	

	

26	

Figure 1 Sample Malware Analysis Workflow

J. Bartolomie (2011). Operational Security Operations

	

	

	

27	

Malware Anti-Analysis Strategies.

Ollman (2011) discusses advanced automation of malware analysis, including the

use of appliances that automatically perform static and behavioral analysis such as

signature checking and virtualized execution. Several strategies are used by malware

authors to make this analysis difficult.

If the IP address of the malware investigator’s network is known to the attackers

they could simple ignore requests from that network which would prevent further

intelligence from being gathered about the malware based on network traffic. An IP

address may become known to attacker simply because considerably more traffic is seen

from it than normal (Ollman, 2010).

 Malware may make isolated analysis difficult by simply checking to see if sites

like yahoo.com or google.com can be connected to before running or requiring that

additional components be downloaded from another site before running. Malware may

also look for elements in the environment, like installed software that may be present on

standard machines, but not on malware testing machines, and may not run if they do not

exist.

Ollman (2011) also discusses how virus upload sites share uploaded files with

multiple anti-virus vendors as malware samples. In the case of VirusTotal submission

files are shared to participating anti-virus vendors if their product does not detect the file

and at least one other product does (“VirusTotal FAQ”, 2011.) Reports on files that

VirusTotal has scanned can be searched for by MD5, SHA1, or SHA256 hash value

(“VirusTotal Search”, 2011.)

	

	

	

28	

Specific details about the malware used in the RSA hack in 2011 were released to

the public by F-Secure due to the malware having been submitted to VirusTotal by an

employee of RSA about two weeks after the breach occurred (Hypponen, 2011). This

illustrates the risk that uploading files to VirusTotal could reveal to an attacker that their

malware has been discovered in the case of a targeted attack (MLE, 2011). Malware

authors are also aware of these risks and use services to test new malware against

multiple anti-virus, anti-spyware, and firewall products. These services advertise that

they do not retain records of files scanned and do not share any information with anti-

virus companies (Krebs, 2009).

Malware Analysis Tools and the Daubert Test

 Malware analysis is often part of a computer forensic investigation, many of

which end up in a court of law. As the output of tools used in malware analysis may be

submitted as evidence in these situations it is important that they meet the legal

requirements that are expected of all accepted scientific evidence (Carrier, 2003).

 In the legal system evidence from malware analysis tools is evaluated under the

same standard as that used for any scientific evidence. This standard is often referred to

as the Daubert Test (Carrier, 2003). The Daubert Test consists of four categories to

evaluate the scientific evidence (the software tool output). The judge uses these

categories before the trial begins to determine whether or not the evidence generated

meets the standards (Carrier, 2003). The four categories are discussed below.

	

	

	

29	

 Testing. It is important to determine whether a software tool produces accurate

results. This is done through performing false positive and false negative tests (Carrier,

2003).

False negative tests are intended to verify that a tool provides all possible data for

a given input. This is generally the easiest type of test. One way to do so is to introduce

data and verify that the tool can acquire the data (Carrier, 2003). False positive tests are

intended to verify that a tool does not add data to its output. One way this can be done is

by comparing the output against the output of another tool (Carrier, 2003).

Some progress has been made towards creating a standardized test for forensic

tools. The National Institute of Standards and Technology with a National Institute of

Justice grant created a group dedicated to computer forensic tool testing. This group has

published evaluations of several different software and hardware tools and has provided

standards for the testing of several types of tools (National Institute of Justice, 2010).

However, several tools have not been tested, tool creation is ongoing, and not all

categories of tools have standards yet.

Carrier (2003) asserts that the best way to test tools used in computer forensics is

by implementing an open method. It is important to understand how a tool works beyond

a generic set of test procedures for a type of tool. Tools, in which the source code is

available, such as open source tools, are easier to evaluate since the code can be reviewed

and tests can be designed based on a greater understanding of the software’s execution.

Carrier believes than even closed source tools should be required to provide at minimum

design specifications to a trusted third party to allow the tool to be more effectively

tested.

	

	

	

30	

Error rate. Software tools generally process input data through a series of rules.

The error rate of a tool is based on how well the tool implements and follows those rules

(Carrier, 2003).

Carrier (2002) identifies two categories of errors that are of interest; abstraction

errors and tool implementation errors. Tool implementation errors come from

programming or tool design issues. These can be subtle. It could be that a tool correctly

follows a specification for the information processed, but what generated the information

does not. Abstraction errors come from making decisions when adding an abstraction

layer to data. An example of this type of error is an intrusion detection system that shows

a network attack by aggregating network packets. Some error is possibly introduced

when the intrusion detection system does not know with 100% accuracy which network

packets are part of the attack.

Carrier (2002) recommends that the error rate be based on number and severity of

bugs found in a given time period. This is difficult to implement with a closed source

application, since errors are not necessarily disclosed. With an open source application it

is easier since even if bugs are not disclosed a comparison of source code between

releases can reveal bug fixes.

Publication. This requirement is meant to verify that a tool has been documented

in some public fashion and has been peer reviewed. This is the weakest area for most

forensic and malware analysis software tools. Very few tools that can be considered

published have specific technical details of the tools operation in these publications

(Carrier, 2003).

	

	

	

31	

 Based on guidance provided by the Federal Bureau of Investigation for use of

imaging technologies in the justice system (1999) software developers should be willing

to release source code of tools when they are used in the generation of evidence. This is

obviously not an issue with open source software. Both open and closed source software

should also contain the details of the operation of the tool documented in a form other

than just source code (Carrier, 2003).

 Acceptance. According to Carrier (2003) many closed source tool providers

assert that the number of users of their particular tool signifies acceptance. The problem

with this assertion is that if choices are limited for a type of tool use of the tool has less to

do with the tool being known valid and more to do with other factors like ease of use.

In-depth technical details about a tool should be made available so the user

community can choose based on those details. Open source tools provide source code,

which allows them to be accepted or rejected based on their technical details (Carrier,

2003).

SFTT Alternatives

Counterintelligence and controlling information. Counterintelligence is any

activities undertaken against enemy intelligence operations. This can include actions such

as identifying that the intelligence operations exist and then deceiving or disrupting them

(Department of Defense, 2010). Enemies can include foreign governments, commercial

interests, and individual actors (O’Connor, 2011).

An important part of counterintelligence is the protection of friendly assets. This

includes activities that identify and neutralize the intention of adversaries and denying

	

	

	

32	

adversaries access to information that might be used against an organization (U.S. Marine

Corps, 2000).

Online file scanning services. There are several public services available that can

be used to analyze files that may or may not be malware. One type of service scans

uploaded files against multiple anti-virus solutions. Some examples of these include

VirusTotal, Jotti, and NoVirusThanks. Another type of service runs uploaded files in a

controlled environment and records the behavior of the executed file. This includes data

like changes made and network traffic generated. Some examples of these include

ThreatExpert, CWSandbox, ANUBIS, and JoeBox (Adair, Hale Ligh, Hartstein &

Richard, 2011).

 Unintentional information disclosure examples. In October of 2011 a hacker

group in Germany called the Chaos Computer Club (CCC) released details on a piece of

Trojan software that was being used by the German government in criminal

investigations (Sullivan, 2011).

A German company called Digitask is the developer and according to F-Secure

(2011) they submitted the installer for the malware multiple times to VirusTotal,

presumably to determine what anti-virus solutions would detect it. This allowed for

additional details to be determined about the malware beyond what was provided by the

CCC such as the identity of the installer. The anti-virus company Kaspersky determined

additional details from the submissions, such as the existence of a 32 and 64-bit version

(Werner, 2011). Most malware authors are aware of this issue and use services that are

for-pay only and advertise that they do not submit their files to anti-virus vendors (Krebs,

2010).

	

	

	

33	

 In August 2011, additional details about the RSA hack that occurred in March

2011 were released by F-Secure. While RSA provided some details about the breach F-

Secure was able to determine the full scope of what happened and provided additional

information. This occurred because an employee at EMC (the parent company of RSA)

submitted the file to VirusTotal around the time the breach occurred (Hyponnen, 2011). It

is likely that RSA would have preferred these details not be released to the public and

could have avoided it by not using Virustotal.

Disadvantages of online file scanning services. Submitting files to online

services for analysis carries a significant risk of exposing information to other parties that

may not be realized by those who do it. Files submitted to these sites are often made

available to anti-virus and security companies. Both VirusTotal and NoVirusThanks

indicate in their policies that this is done (“VirusTotal FAQ,” n.d. “; NoVirusThanks

Terms”, 2010.) Even if the service does not share submitted files generated reports can

often be searched. ThreatExpert allows for generated reports to be searched by text string

or by cryptographic hash. If a targeted malware is submitted the author of said malware

could find out by searching for the hash value using the ThreatExpert site or Google.

SFTT avoids these issues by only using hash values of files with these services and not

submitting the files themselves.

Conclusions

SFTT will provide the capacity to use open source intelligence gathered by a

malware analyst and through the Internet to investigate suspicious files. Using these

sources allows for both dynamic and static analysis information to be gathered with a

	

	

	

34	

minimum of manual effort, allowing the malware analyst to focus on tasks that require

creativity. It will accomplish this while minimizing exposure of information about the

user by supporting the use of proxies and not releasing files to third party services. SFTT

will support a plug-in based system for adding capabilities to the tool and encourage

contributions of additional plug-ins through an open source license.

In the next section, the discussion of the findings, SFTT, and its features will be

presented in the context of this literature review. The design and initial plug-ins for SFTT

will also be discussed. Lastly, limitations and issues with the SFTT tool will be

mentioned.

	

	

	

35	

DISCUSSION OF THE FINDINGS

Problem Synopsis

There has been tremendous growth in the amount of malware. In 2010 more than

one third of all malware in existence was created (Panda Labs, 2010).

Malware continues to change and evolve at a rapid pace. For less than four

thousand U.S. dollars the ZeuS Trojan kit can be purchased in the criminal underground.

As of version 1.4 it supports the ability to re-encrypt itself and alter file names for each

infection, making automated detection very difficult (Stevens & Jackson, 2010). The

availability of off-the-shelf malware with this type of capability means that over half of

new malware exists for no more than 24 hours (Panda Labs, 2010).

 Malware is also adapting to other types of devices beyond personal computers.

The number of networked devices was predicted by Cisco (2011) to exceed the number

of people by the end of 2011. These devices include smartphones. Malware has begun to

target phones running the iOS and Android operating systems. A variant of the ZeuS

Trojan called Zitmo can infect Android phones and access user bank accounts to intercept

one-time transmission passwords. This allows the owner of the malware to run

transactions against those bank accounts (Panda Labs, 2011).

 The quantity of devices and data that could potentially be involved in a malware

investigation can make analysis very difficult. This is referred to as the Quantity Problem

(Carrier, 2003; Schatz, 2007). As new types of malware and obfuscation techniques are

created new techniques may need to be developed to process this data (Schatz, 2007). It

can require a significant amount of effort and knowledge to comprehend this new data

	

	

	

36	

(Carrier, 2003). This is referred to as the Complexity Problem (Carrier, 2003; Schatz,

2007).

Literature Review Synopsis

 The use of an open source software license for SFTT has already been discussed.

The principles that make a software license open source were enumerated. A description

of the BSD 3-Clause License, which was chosen for SFTT, was given. Key reasons for

using the BSD 3-Clause License and for using an open source license were described.

 The literature review provided background on malware. This included an

expanded definition of malware and types of malware that are known to exist. Details as

to the extent to which malware influence the behavior of individuals, businesses, and

governments were provided. Specific examples of malware such as Stuxnet were

discussed to provide real-world examples to illustrate the impact of malware.

 The function and processes of malware analysis were identified. This included a

description of what malware analysis is and who might perform it. Malware analysis was

discussed within the purview of computer security. Its importance was emphasized in the

resolution and understanding of most computer security incidents.

 The next topic discussed was the static analysis of malware. Static analysis is

defined as any analysis performed on malware that does not involve actually running it

digitally. Cryptographic hashes were discussed, along with common tools used to

generate them and the different types of cryptographic hashes that exist. Virus scanning

methodologies were also discussed. The use of virus scanning tools was described along

	

	

	

37	

with specific types of functionality that virus-scanning tools have, such as signature

checking and heuristic checking.

 Dynamic analysis of malware was also covered. It is defined as running malware,

observing its behavior, and how it modifies the compromised system. The advantages and

disadvantages of performing dynamic analysis on physical and virtual machines were

explored.

 The importance of having an incident response plan and how malware analysis

fits into incident response were discussed. An example of a malware analysis workflow

was presented.

 Lastly was a discussion of the main competition to SFTT. These are online

services that perform some combination of scanning files using multiple anti-virus

solutions and running the files inside a controlled environment to observe their behavior.

Discussions of counterintelligence concepts, and specifically the need to protect

information, were used to show the disadvantages of using these online services. Some

examples of unintended leakage of information related to use of online anti-virus and file

scanning services were discussed.

SFTT in Relation to the Literature Review

 SFTT was influenced in several key ways by the RegRipper tool. These include

the use a plug-in framework that will make it easier to add and remove specific

functionality and a command line interface with similar options. The design of SFTT

described in the next section will assume implementation in the Perl scripting language,

	

	

	

38	

which is also used to implement RegRipper. Specific design choices made in RegRipper

will be carried over to SFTT where appropriate.

 A main priority of SFTT is to minimize information that could be discerned by an

adversary based on the usage of the tool. Doing so adheres to one of the main principles

of counterintelligence, which is denying the enemy access to information that might be

used against an organization. Many SFTT plug-ins could use online services that either

release uploaded files to third parties like anti-virus companies or make it possible to

others to see what files have been processed by the tool.

Releasing malware files to online services could be a source of embarrassment or

reveal damaging information. A specific concern with malware is that it could be targeted

or unique malware. Writers of this kind of malware could use a search engine to look for

its cryptographic hash and see if any services have processed it. This would indicate that

the malware has been discovered and allow them to react accordingly. SFTT avoids these

issues by just searching for existing reports on these services using cryptographic hash

values.

SFTT will be an open source tool. Releasing SFTT under this type of license is

intended to encourage individuals to contribute plug-ins to the tool and to contribute to

the malware analysis and computer forensic communities. Providing the source code of

SFTT and its plug-ins will simplify tool validation. This is important if information

gathered by SFTT is used in a courtroom where it will have to meet the four categories of

the Daubert Test. Those are accuracy of operation, understanding of the error rate of the

tool, information about how the tool operates, and acceptance of the tool in the forensic

community.

	

	

	

39	

SFTT will be a static analysis malware tool because it will not execute the file

that it is processing. In the context of the malware analysis workflow that was shown in

the literature review SFTT is part of basic static analysis that is performed on any files

that have not been identified previously (see Figure 1 on page 26). Note that the types of

information collected during dynamic analysis of malware, like processes generated

when malware is launched, may be collected from sources by SFTT.

SFTT Core Framework Design

SFTT prerequisites. SFTT will require version 5.10.0 or newer of the Perl

scripting language to be installed for its execution. Most distributions of the Linux and

Mac OS X operating systems have Perl installed by default. On Windows ActivePerl

Community Edition or Strawberry Perl can be downloaded and installed to meet this

requirement (“ActivePerl Community Edition,” n.d. “; Strawberry Perl for Windows”,

n.d.).

 SFTT plug-ins may also have separate required modules. Modules required by the

core framework and the initial plug-ins will be described later. Most SFTT operations

will require a connection to the Internet to function correctly. Specific plug-ins may have

other prerequisites that will be described later.

SFTT structure. SFTT will be distributable as a directory that can be dropped

into the file system wherever desired. The contents of that directory are listed in Table 3

on page 40. The core framework of SFTT will consist of a single executable file called

sftt.pl, which will be passed command line arguments for execution. The core framework

	

	

	

40	

will coordinate execution of SFTT by processing command line arguments and executing

the plug-ins.

Table 3 SFTT File Layout

File/Directory Description

sftt.pl Main executable file for SFTT

sftt_config.xml Framework configuration file for SFTT

sftt_logging.conf Logging configuration file for SFTT

sftt.log SFTT log file; only exists if tool has been run at least

once (default configuration)

plugins/ Directory where SFTT plug-ins are placed (default

configuration)

support/ Directory for files required by SFTT plug-ins (default

configuration)

README Instructions for using SFTT

Author implementation of CONOPS (2012, February 16)

 Configuration of the SFTT core framework will be supported through the file

called sftt_config.xml. This file will be XML based with a structure similar to that shown

in Figure 2 on page 41. Configuration options set here will be accessible by specific plug-

ins as well. By default sftt_config.xml will allow for the expected location of plug-in files

and plug-in support files to be set. These by default will be ./plugins and ./support.

Relative and absolute directory paths will be supported for these values and they will not

be able to be overridden by plug-in configuration files. Both UNIX and Windows style

directory paths will be supported.

	

	

	

41	

Figure 2 SFTT sftt_config.xml

Author implementation of CONOPS (2012, February 16)

A server IP address will also be configurable through file_processing.xml to

configure a SOCKet Secure (SOCKS) proxy. A proxy sits between two computers over a

network and routes traffic between them and allows for the users IP address to be hidden.

All network-based plug-ins described in this paper will support this proxy configuration.

It will be possible for specific plug-ins to be configured to override the main proxy

settings.

The timeout value is the amount of time in seconds that a SFTT plug-in will wait

for information to be returned from the Internet before returning a failure message to the

core framework. This is only used for plug-ins that access the Internet and can be

overridden in a plug-ins configuration file.

The file sftt_logging.conf will allow for configuration of comprehensive logging

for SFTT as shown in Figure 3 on page 42. By default two loggers are created, one for

the SFTT core and one for the SFTT plug-ins. Log messages can be classified from high

	

	

	

42	

to low in order of importance as FATAL, ERROR, WARN, INFO, DEBUG, and

TRACE. Both loggers are set to record the debug level DEBUG by default.

Figure 3 SFTT sftt_logging.conf

Author implementation of CONOPS (2012, February 16)

Also by default log messages will be written to the file ./sftt.log. Based on

configuration a typical log entry will look like the following:

[06 Nov 1994 15:49:37,459] sftt.pl:88 – Beginning to call plug-ins

The log entry begins with its inception date, provides the file name and line where

the entry was generated, and then prints the log message.

The Perl modules used by the SFTT core framework are listed in Table 4 on page

43. These modules enable the XML based configuration files used by the SFTT core

framework to be loaded and accessed and also support proxy configuration and logging.

These modules are also available to any plug-ins.

SFTT functionality. As stated previously, the initial version of SFTT will be

limited to a command line tool. The list of available command line flags can be found in

Appendix A.

	

	

	

43	

SFTT can list command line functions and plug-ins available. SFTT selects plug-

ins to run by either providing the name of a specific plug-in or by providing a file that has

a list of plug-ins to run. SFTT can run plug-ins against an MD5, SHA1, or SHA256

cryptographic hash or a binary file. If a binary file is provided the SFTT core framework

will generate a SHA1 cryptographic hash to pass to plug-ins that accept hash values.

Some examples of how these command line flags would be used in practice are shown in

Appendix B.

Table 4 Perl Modules Used in SFTT Core Framework

Perl Module Description

XML::Simple A application programming interface for XML that

makes it easy to access information in the files

LWP::UserAgent Implements a web user agent that can handle web

requests and responses in HTTP style communication

LWP::Protocol::socks Adds support for the SOCKS protocol for

LWP::UserAgent

Log::Log4perl Provides a standard interface for logging and the ability

to customize logging messages and logging destinations

Author implementation of CONOPS (2012, February 17)

SFTT Plug-ins

 SFTT implements its functionality using plug-ins. Each plug-in in SFTT is a Perl

library that is loaded from the configured directory when SFTT executes it. This directory

	

	

	

44	

is by default ./plugins. If a plug-in is named exampleplugin.pl, then the name of the plug-

in is exampleplugin.

 Each plug-in can have a XML based configuration file that is loaded from a plug-

in support file directory. By default this directory is ./support. If the name of the plug-in

is testplugin the name of the configuration file would be testplugin.xml. Any additional

files required by a plug-in will also reside in the plug-in support file directory.

Plug-in API. Each SFTT is required to implement a specific set of functions

expected by the core framework. These functions are listed in Appendix C.

Each plug-in can return its name and version number. It will accept either a file or

a hash value and the core framework will determine what parameters to pass by calling

getInput (see Appendix C). Each plug-in can be executed and will return its output, which

will be in plain text.

SFTT Initial Plug-in Descriptions

 Three plug-ins that will be implemented in the initial version of SFTT are

described below.

Figure 4 ssdeep Plug-in Configuration

Author implementation of CONOPS (2012, February 16)

	

	

	

45	

 Ssdeep plug-in. The ssdeep plug-in will be used to compare the ssdeep

cryptographic hash of a file against a list of ssdeep cryptographic hashes provided by the

user of the plug-in. The default configuration file for ssdeep is shown in Figure 4 on page

44. The ssdeep binary and ssdeep hash list have to be installed by the user in the plug-in

configuration support directory and are expected by default to be named ssdeep and

ssdeep_hash_list, respectively. The match value at which ssdeep reports a possible match

can also be set. The match value ranges from the lowest match value of 0 to a highest

match value of 100. This value will by default be set to 80 (“Fuzzy Hashing and ssdeep,”

n.d.).

 The ssdeep plug-in will accept two arguments. One is a file that is provided to the

plug-in for comparison. The second is the list of ssdeep hashes from the plug-in

configuration support directory. The plug-in will not be executed if only a hash value is

provided to SFTT or if the hash list does not exist. The ssdeep plug-in will return either a

list of files that matched the provided file, a message indicating that no matches were

found, or an error message if the plug-in failed.

 Virustotal plug-in. The virustotal plug-in will be used to send a cryptographic

hash value to the VirusTotal web service. If the file has been submitted to VirusTotal

previously anti-virus scanning results for the file that match that hash will be returned. If

the file has not been submitted a result indicating this will be returned. This plug-in will

accept MD5, SHA1, or SHA256 cryptographic hashes. Values that can be returned also

include a message indicating that no anti-virus scanning values were found for a file with

the hash provided or an error message if the plug-in does not function correctly.

	

	

	

46	

The default configuration file for the plug-in is shown in Figure 5. The virustotal

plug-in will require a public API key to be acquired from VirusTotal by creating an

account on their web site. This key will then have to be pasted in the configuration before

the virustotal plug-in will function (“VirusTotal FAQ”, n.d.).

Figure 5 virustotal Plug-in Configuration

Author implementation of CONOPS (2012, February 16)

 Threatexpert plug-in. The threatexpert plug-in will send a MD5 cryptographic

hash to the ThreatExpert web service and return information about the file that matches

the hash if it exists. This plug-in will only accept an MD5 hash. Values that can be

returned include a message indicating that no information about the files corresponding to

the provided hash was found or an error message if the plug-in failed. This plug-in has no

specific configuration values associated with it (“ThreatExpert”, n.d.).

SFTT Limitations

 Two of the three SFTT plug-ins discussed use external Internet services to

perform their functions, as will most future plug-ins. This characteristic of SFTT carries

some limitations with it. These services have terms of use that can change or expand.

	

	

	

47	

This can make plug-in operation against the service legally questionable and create

complications. Changes to the terms of use of a service can change legal usage of a

service to illegal or unlicensed usage. Companies and government organizations should

be particularly concerned about these issues.

Technical limitations and issues are also a concern when using external services.

Using the service in an authorized fashion may impose some limitations that can be

bothersome. An example would be the public API for VirusTotal limits the user to four

queries per minute. If SFTT is running frequently, this throttling could lead to delays. If a

service is being used in an unofficial or unsupported way, such as scraping and parsing a

web page, changes to the design of the page or how the service operates could break a

plug-in without warning. Lastly, a service could become unavailable because of

maintenance or simply be discontinued, breaking a plug-in.

Despite the efforts taken to limit information leakage in SFTT when using

external services, there are still risks. Someone monitoring incoming network traffic to a

service could determine the origin of requests and that could expose intelligence about a

SFTT user, even if it is just that they are using a particular proxy service. While it is not

currently possible for anyone but the owners of these services to check whether a

cryptographic hash value has been searched for, this could be changed by a service or a

service could be compromised and the information released or exploited by a particular

group.

In the last section of this paper conclusions will be drawn about SFTT based on

prior discussion. Recommendations will also be provided for ways that SFTT could be

expanded and possible new areas of tool functionality that could be explored.

	

	

	

48	

RECOMMENDATIONS AND CONCLUSIONS

Recommendations

 Based on the investigation and research performed the scope of SFTT is

expandable. There are two parts of SFTT. One part accepts input, executes the

appropriate plug-ins, and then provides the output. The second part is the plug-in

framework that allows users to develop new plug-ins or modify existing plug-ins. The

recommendations discussed below are summarized in Table 5 on page 50.

 User interface improvements. Adding a graphical user interface to SFTT will

increase productivity and discoverability. Plug-ins and file processing would become

more user friendly. A web-based interface and modifying SFTT into a web service would

make multiple concurrent user access possible.

 Standardized output formats. SFTT can be improved by providing multiple

output formats. This would include structured data formats like HTML or XML. Adding

PDF output would make printing easier and provide portability. Providing the ability to

email reports to users after they are generated by SFTT would enhance the user

experience.

 Automated processing. It may be useful to integrate SFTT into a larger, fully

automated sequence. SFTT could check the contents of a directory and process any files

that appear. Based on the SFTT results the automated process engine would decide

whether or not to engage in further analysis. An example of a tool that could be

integrated with is the Cuckoo Sandbox. This tool uses the virtualization software

VirtualBox to perform automated dynamic analysis of files (“Cuckoo Sandbox”, n.d.).

	

	

	

49	

SFTT would triage files to determine whether or not they need to be processed by

Cuckoo Sandbox, based on some automated criteria.

 New SFTT plug-ins. Other malware static analysis actions could be automated

by adding new plug-ins to SFTT. One way to address the concern of information leakage

when using external services is to set up services within an organization’s infrastructure.

There are companies like FireEye that develop network appliances to perform automated

dynamic analysis of suspected malware files (“FireEye Malware Analysis System”, n.d.).

SFTT could send files to these appliances and then process the information that is

returned.

Anti-virus software could be installed on multiple virtual machines and then used

to test suspicious files. SFTT would transmit files to the virtual machines or to a directory

that is mounted by these virtual machines and then process the returning results.

Implement SFTT. A limitation of this report is that the tool was not implemented

and tested. Writing a new paper that describes the creation of SFTT as planned and any

unexpected challenges or benefits that were encountered would provide additional useful

information.

In addition to discussing the implementation of SFTT this paper should address

providing a test version to some malware analysts and incident responders and discuss

feedback. It is also important to test the tool in a controlled environment to evaluate

accuracy and usability issues. Load testing would provide insight into the performance of

SFTT. This could be as simple as running a number of files through the tool multiple

times and monitoring computer resource usage and execution times.

	

	

	

50	

 Expanding the scope of study around SFTT and looking at other types of tools

and plug-ins that could be developed using the same concepts will help to develop a

greater understanding of what can be accomplished. This area of malware analysis is

open to the continued creation and refinement of tools.

Table 5 Summary of Recommendations

Recommendations

Add a web-based interface to allow access by multiple users at the same time

Provide multiple output formats for results, like XML, PDF, and HTML

Integrate into one or more tools to allow for automation to be expanded across

multiple steps of malware analysis

Add a plug-in to support sending files and receiving reports from proprietary dynamic

analysis engines like FireEye

Add a plug-in to support send files and receiving results from an intranet anti-virus

farm

Write a report in the future about implementing SFTT and the complications and

benefits encountered

Author recommendations (2012, February 21)

Conclusions

The purpose of this paper was to develop a tool to support the gathering of open

source intelligence related to files that could be malware related. This open source

intelligence could be gathered from the Internet or from information already compiled by

the user of the tool. The tool is called the Suspicious File Triage Tool, or SFTT. A

malware analyst or incident responder can use this tool during the initial part of a

	

	

	

51	

malware investigation or it may be implemented to automatically preprocess samples

prior to being submitted for manual analysis. The information obtained will help to

determine what subsequent steps should be taken in an investigation.

 Malware analysis has become an important part of investigating security breaches

due to the high likelihood that malware is involved. This extends to identifying the

perpetrators of the breach and determining the best response. Manual analysis of malware

is very time consuming and any method that decreases the time required is highly

desirable.

Part of addressing the challenge of processing and understanding the large

quantities of data involved with malware investigations is the use of software tools.

Automating malware analysis tasks with tools like SFTT frees the time of the malware

analyst to focus on tasks that require expertise and creativity. It also allows for samples

that are not malware or have already been analyzed to be handled earlier in the process,

which increases efficiency. Performing this automation in the context of a malware

investigation workflow allows for more time to be saved and reduces the chance than an

important step will be overlooked.

Since many investigations that involve analysis of malware may end up in a court

of law, it is important that SFTT meet legal requirements. Software tool output is treated

like scientific evidence and a set of four criteria called the Daubert Test are used to

evaluate it. These criteria are whether or not the tool produces accurate results, what the

error rate of the tool is, whether the tool has been peer reviewed and documented in some

public fashion, and acceptance of the tool in the forensic community. The fact that SFTT

	

	

	

52	

will have its source code available under an open source license will allow its technical

merits to be evaluated openly and its functionality to be discoverable.

There are several online services like VirusTotal and ThreatExpert that will

accept uploaded files, analyze them against anti-virus software and other tools, and then

display that information to the user. A principle of counterintelligence is the protection of

friendly assets and intelligence. Uploading files to these services violates that principle

by exposing damaging or embarrassing information to adversaries or third parties. SFTT

can avoid these issues by only querying information from these services and not

submitting files to them.

Table 6 Summary of Conclusions

Conclusions

The growth of malware has made malware analysis more difficult and more important

Software tools, automation and workflows help to meet the challenges of malware

growth

Tools like SFTT have to meet the criteria of the Daubert Test to be used in a legal

investigation

Uploading files to services like VirusTotal make information leakage an issue; SFTT

lessens this leakage considerably by using these services in different ways

SFTT can be built to meet its requirements

SFTT has limitations related to using external services such as availability and terms of

use changes

SFTT can be expanded and evolved to add new functionality and interfaces

Author conclusions (2012, February 21)

	

	

	

53	

SFTT will be a plug-in based tool with a core framework inspired by the

Windows Registry analysis tool RegRipper. As long as plug-ins are written to a specific

standard expected by the core framework they can be used by the tool. An examination of

how SFTT can be implemented shows that it is entirely feasible to design a tool that

meets these requirements. There are some possible limitations with this approach.

External services used by SFTT plug-ins can malfunction or shutdown. Interfaces to

these services can change, with little or no notice, also causing plug-ins to break. Despite

efforts to limit information leakage changes to an external service policy or compromise

of an external service could still allow this to occur.

SFTT has the potential to be expanded and evolve in many new ways that still fit

its core focus. New plug-ins can add new capabilities, such as being able to integrate with

commercial malware analysis tools. Adding new methods to interact with SFTT, such as

a web interface, would reduce the learning curve for using SFTT.

Despite the growing threat posed by malware, there are positive steps that can be

taken to address these challenges. By building new tools like SFTT and expanding the

range of tools available the difficulties of malware analysis can be mitigated and less

skilled personnel can perform portions of the investigation process, allowing the more

experienced analysts to focus on areas that require manual analysis.

	

	

	

54	

Appendix A

 SFTT Command Line Options

Option Description

-f, --file <FILE> Specify file named <FILE> to process

(cannot be used with –m, -s, or –s256)

-m, --md5 Specify MD5 cryptographic hash value to process

(cannot be used with –f, -s, or –s256)

-s, --sha1 Specify SHA1 cryptographic hash value to process

(cannot be used with –f, -m, or –s256)

-s256, --sha256 Specify SHA256 cryptographic hash value to process

(cannot be used with –f, -m, or –s)

-p <PLUG-IN>, --plugin

<PLUG-IN>

Run plug-in <PLUG-IN>

(cannot be used with –L)

-L <LIST>, --pluginlist

<LIST>

Runs all plug-ins in <LIST>

(cannot be used with –p)

-l, --listplugins List available plug-ins

(only used by itself)

-h, -?, --help Help (print this list)

(only used by itself)

-v, --version List the version of SFTT and all plug-in versions

Author implementation of CONOPS (2012, February 17)

	

	

	

55	

Appendix B

 SFTT Examples of Usage

Usage Example Command Line

Printing help information ./sftt.pl --help

List all available plug-ins ./sftt.pl --listplugins

Run SFTT against SHA1 hash

using the plug-in list

plugins_used.txt

./sftt.pl

--sha1

8c9d61d849a71c7d56f0424f1ada4420b9aedd39

--pluginlist plugins_used.txt

Run SFTT against file

example.exe with the plug-ins

named ssdeep and threatexpert

./sftt.pl --file example.exe

 --plugin ssdeep --plugin threatexpert

Author implementation of CONOPS (2012, February 17)

	

	

	

56	

Appendix C

SFTT Plug-in API

Function

Name

Description

getName Returns name of the plug-in

getVersion Returns version number of plug-in (e.g. “1.0”)

getInput Returns type of input value expected by the plug-in. Possible values are

“md5”, “sha1”, “sha256” and “file”

pluginMain Function that is called to execute the plug-in. Returns output from

executing plug-in

Author implementation of CONOPS (2012, February 17)

	

	

	

57	

Appendix D

Glossary

Anti-virus Software – Software used to scan potential malware sources against

signatures and to perform actions against data that matches. This can include

quarantining or removing the data (Harris, 2010).

API – Acronym for application programming interface. It is a set of instructions and

standards for accessing particular software (Roos, n.d.).

ASCII – Acronym for American Standard Code for Information Interchange. ASCII is a

character encoding format that converts binary into readable characters (Harris, 2010).

Bot – A type of malware designed to operate in concert with a larger group of computers,

generally for malicious purposes (OECD, 2008).

Command Line Interface – Interacting with a system in real time via typed commands.

Sometimes shortened to CLI (Stephenson, 1999).

Computer Forensics – The recovery, authentication, and analysis of electronic data

using specialized techniques, often for the purposes of a criminal investigation (Harris,

2010).

CONOPS – Acronym for concept of operations. A statement of what is intended to be

accomplished with available resources (Department of Defense, 2010).

Context Triggered Piecewise Hash – A cryptographic hash created by hashing a file in

pieces which size are determined by monitoring the results of generating a rolling hash at

the same time. This is used by the ssdeep tool (Kornblum, 2006).

	

	

	

58	

Counterintelligence– Activities undertaken against enemy intelligence operations such

as identifying that the intelligence operations exist and then deceiving or disrupting them

(Department of Defense, 2010).

CPAN – Acronym for Comprehensive Perl Archive Network. It is a collection of

software and documentation and software for the Perl scripting language (“The CPAN

Frequently Asked Questions”, n.d.).

Cryptographic Hash - A fixed-length value produced mathematically from a variable-

length string. The fixed-length value cannot be reversed to produce the variable –length

string (Harris, 2010).

Daubert Test – A set of criteria to determine whether scientific evidence is admissible in

a court of law. Named after the Supreme Court ruling in Daubert vs. Merrill Dow

Pharmaceuticals in 1993 (Carrier, 2003).

Distributed Denial of Service Attack – A network attack where many computers from

several different locations overwhelm a computer with traffic (Harris, 2010)

Dynamic Analysis (Malware) – The process of determining what happens when a

malware file is executed (Hutcheson, 2006).

Encryption – A mechanism for protecting information from unintended disclosure by

making data unreadable to all but the intended destination (Krutz & Vines, 2001).

False Negative – When a condition, such as software vulnerability, exists but is not

detected by a tool (“What is a False Negative?” n.d.).

False Positive – When a condition, such as software vulnerability, does not exist but is

detected by a tool (“What is a False Positive?” n.d.).

	

	

	

59	

Firewall – Software or hardware used to restrict access from one network to another

network (Harris, 2010).

Graphical User Interface – Interacting with a system via visual abstractions such as

icons, windows, and a mouse pointer. Sometimes shortened to GUI (Stephenson, 1999).

Heuristic Analysis – Uses reaching a threshold of indicators that might be present to

determine whether or not data might be malware (Castelli, 2001).

HTML – A markup language used to format web pages (Harris, 2010).

Intrusion Detection System – Software used to monitor network activity and look for

behaviors that vary from the expected activity of the network (Harris, 2010).

IP Address – A numerical value that identifies a device on a network. Is 32 bit in IPV4

and 128 bit in IPV6 (Harris, 2010).

Malicious Mobile Code – A type of malware that is a small program that is downloaded

from remote locations and executed without the permission of the user (Skoudis &

Zeltser, 2004).

Malware – Malicious code from an attacker that runs on a computing device (Skoudis &

Zeltser, 2004).

Malware Analysis – The examination of malware in all its forms (“Malware Analyst –

Job Description”, n.d.).

Metadata – Data that describes data (Harris, 2010).

Open Source Intelligence – Information that is gathered from publically available

sources such as newspapers and web logs (George & Bruce, 2008).

	

	

	

60	

Open Source Software – Software in which the source code is made available with the

binary. The license the software is under allows for the source code to be changed,

redistributed, and used in other projects (“Open Source Initiative”, n.d.).

PDF – A document container format. Allows for content to look the same on a screen

and on the printed page (U.S. Census Bureau, 2011).

Perl – A programming language in use for over 23 years. Often used for scripting and

web infrastructure (“About Perl”, n.d.).

Phishing - A social engineering attack intended to obtain data such as credit cards and

personal information (Harris, 2010).

Process – A set of instructions that is running on a computer that carry out several types

of functionality (Harris, 2010).

Proxy – Sits in the middle of two endpoint connections and routes traffic between them

(Harris, 2010).

RegRipper – A plug-in based tool written in Perl for processing and parsing data from

Windows registry hives (Carvey, 2011).

Rootkit – User-level rootkits replace or modify standard system executables to hide

malicious activity or create backdoors. Kernel-level rootkits modify the core of the

operating system (kernel) for the same purpose (Skoudis & Zeltser, 2004).

Signature Analysis – Using a signature database of known malware files to determine

whether data being scanned is malware (Castelli, 2001).

Static Analysis (Malware) – Any examination of malware that can be done without

executing it (Hutcheson, 2006).

	

	

	

61	

ThreatExpert – An online service that analyzes and then reports the behavior of

malware (“ThreatExpert: Introduction”, n.d.)

Trojan Horse – A type of malware that appears to be a legitimate application such as a

game but actually does something malicious (Skoudis & Zeltser, 2004).

Unicode – A character encoding format that can represent the all textual characters in the

world as a standard format (Harris, 2010).

Virtual Machine – An instance of an operating system running in a virtual environment.

Allows a single computer to run multiple operating systems at the same time (Harris,

2010).

Virus – A type of malware that infects a particular file on a device. Requires manual

intervention to replicate such as launching an executable file (Skoudis & Zeltser, 2004).

VirusTotal – An online service that analyzes files and web links for malicious content

(“About VirusTotal”, n.d.).

Windows Registry – A database of configuration information that is binary and

hierarchical on modern Windows systems (Carvey, 2011).

Workflow – A series of connected steps, such as the process for requesting a new user

account (Harris, 2010)

Worm – A type of malware whose main characteristic is that it can spread across a

network without manual intervention (Skoudis & Zeltser, 2004)

XML – Acronym for Extensible Markup Language. A markup language used to create

other markup languages. A markup language allows for text to be constructed and viewed

in a certain way (Harris, 2010).

	

	

	

62	

Appendix E

BSD 3-Clause License Template

Copyright (c) <YEAR>, <OWNER>
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.
• Neither the name of the <ORGANIZATION> nor the names of its contributors

may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(“Open Source Initiative”, n.d.)

	

	

	

63	

REFERENCES

About Perl (n.d.). Retrieved February 22, 2012 from http://www.perl.org/about.html

About VirusTotal (n.d.). Retrieved February 22, 2012 from

https://www.virustotal.com/about/

ActiveState Community Edition (n.d.). Retrieved February 18, 2012 from

http://www.activestate.com/activeperl/downloads

Adair, S. & Hale Ligh, M. & Hartstein, B. & Richard, M. (2011). Malware Analyst’s

Cookbook and DVD. In C. Long, M. Spears, M. Gregg, K. Wisor & N. Rappaport

(Eds.). Indianapolis, IN: Wiley Publishing, Inc.

APWG (2009). Phishing Activities Trends Report 3rd Quarter 2009 [White Paper]

Retrieved from http://www.antiphishing.org/reports/apwg_report_Q3_2009.pdf

AV Comparatives (2011). Summary Report 2011 [White Paper]. Retrieved from

http://www.av-comparatives.org/images/stories/test/summary/summary2011.pdf

Ayers, D. (2009). A second generation computer forensic analysis system. Digital

Investigation, 6, S34–S42. doi:10.1016/j.diin.2009.06.013

Altheide, C. & Carvey, H. (2011). Digital Forensics with Open Source Tools. In R.

Davidson, A. Ward, & H. Scherer (Eds.), Disk and File System Analysis (pp. 39-

67). Waltham, MA: Syngress Publishing, Inc.

Bartolomie, J. (2011, October 10). Operational Security Operations. ITT ICS-01,

Approved for Public Release 10-11, PR2011-35

Best Practical Services (n.d.). Retrieved February 11, 2012 from

http://bestpractical.com/services/

	

	

	

64	

Brunner, M., Epah M., Hofinger, H., Roblee, C., Schoo, P., Todt, S. (2010). Establishing

a Secured, Honeynet-based Cyber Threat Analysis, and Research Environment.

The Fraunhofer AISEC Malware Analysis Report Technical Report. Retrieved

from http://www.aisec.fraunhofer.de/content/dam/aisec/en/pdf/TechReports

/AISEC_MalwareLab.pdf

Carrier, B. (2002). Defining Digital Forensic Examination and Analysis Tools. Paper

presented at the Digital Forensics Research Workshop 2002, Syracuse, NY.

Retrieved from http://www.digital-evidence.org/papers/dfrws_define.pdf

Carrier, B. (2003). Defining Digital Forensic Examination and Analysis Tools Using

Abstraction Layers. International Journal of Digital Evidence, 1(4), 1–12.

Retrieved from http://citeseerx.ist.psu.edu/viewdoc

/download?doi=10.1.1.14.9813&rep=rep1&type=pdf

Carrier, B. (2003). Open Source Digital Forensics Tools The Legal Argument. Retrieved

from http://www.digital-evidence.org/papers/opensrc_legal.pdf

Carvey, H. (2011). Windows Forensic Analysis. In A. Ward, E. Casey & G. Byrne (Eds.),

Registry Analysis (pp. 157–252). Burlington, MA: Syngress Publishing, Inc.

Carvey H. (n.d.). Windows Incident Response [Web log]. Retrieved February 11, 2012

from http://windowsir.blogspot.com

Castelli, J. (2001). Choosing Your Anti-Virus Software. SANS Institute Information

Security Reading Room. Retrieved from

http://www.sans.org/reading_room/whitepapers/commerical

/choosing-anti-virus-software_784

	

	

	

65	

Cisco (2011). Entering the Zettabyte Era [White Paper]. Retrieved from

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537

/ns705/ns827/VNI_Hyperconnectivity_WP.pdf

Corrons, L. (2011, December 15). 2012 Security Trends [Web log post]. Retrieved from

http://pandalabs.pandasecurity.com/2012-security-trends/

CPAN Frequently Asked Questions (n.d.). Retrieved December 30, 2011 from

http://www.cpan.org/misc/cpan-faq.html

Cuckoo Sandbox (n.d.). Retrieved February 20, 2012 from http://cuckoobox.org/

Davis, M. (2010). Global Threat, Local Pain: 2010 Strategic Security Survey [White

Paper]. Retrieved from http://reports.informationweek.com/abstract

/21/3018/Security/research-2010-strategic-security-survey.html

Department of Defense (2010, November 8). Department of Defense Dictionary of

Military and Associated Terms (Joint Publication 1-02). Retrieved from

http://www.dtic.mil/doctrine/new_pubs/jp1_02.pdf

Distler, D. (2007). Malware Analysis: An Introduction. SANS Institute Information

Security Reading Room. Retrieved from http://www.sans.org/reading_room

/whitepapers/malicious/malware-analysis-introduction_2103

Driscoll, D. & Brizee, A. (2010). Evaluating Print vs. Internet Sources. Retrieved from

http://owl.english.purdue.edu/owl/resource/553/04/

FireEye Malware Analysis System (n.d.). Retrieved February 20, 2012 from

http://www.fireeye.com/products-and-solutions/malware-analysis.html

Fuzzy Hashing and ssdeep (n.d.). Retrieved February 19, 2012 from

http://ssdeep.sourceforge.net/

	

	

	

66	

George, Roger Z. and Bruce, James B., eds. Analyzing Intelligence. Washington, D.C.:

Georgetown University Press, 2008

G Data (2011). Security Survey 2011: How do users assess threats from the Internet?

[White paper]. Retrieved from http://www.gdata-software.com

/wp-content/uploads/GData_SecuritySurvey_2011_EN2.pdf

GNU Coreutils (n.d.). Retrieved January 24, 2012 from

http://www.gnu.org/software/coreutils/manual/html_node/index.html

Harris, S. (2010). All in One CISSP Exam Guide Fifth Edition. New York, NY: McGraw-

Hill

How to use WHOIS effectively to tracker spammers (n.d.). Retrieved January 1, 2012

from http://www.netdemon.net/tutorials/whois.txt

Hutcheson, L. (2006, July 9). Malware Analysis: the Basics. Retrieved from

http://isc.sans.org/presentations/cookie.pdf

Hypponen, M. (2011, August 26). How We Found the File That Was Used to Hack RSA

[Web log post]. Retrieved from http://www.f-/secure.com/weblog

/archives/00002226.html

Janus, M. (2011, August 16). Heads of the Hydra. Malware for Network Devices [Web

log post]. Retrieved from http://www.securelist.com/en/analysis/204792187

/Heads_of_the_Hydra_Malware_for_Network_Devices

Jeffbryner (2009, August 7). RegRipper on Linux? Message posted to

http://www.forensicfocus.com/index.php?name=Forums&file=viewtopic&t=4315

	

	

	

67	

Kendall, K. (2007). Practical Malware Analysis. Retrieved from

http://www.blackhat.com/presentations/bh-dc-07/Kendall_McMillan

/Paper/bh-dc-07-Kendall_McMillan-WP.pdf

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise

hashing. Digital Investigation 3S, S91–S97. doi:10.1016/j.diin.2006.06.015

Krebs, B. (2009, December 31). Virus Scanners for Virus Authors [Web log post].

Retrieved from http://krebsonsecurity.com/2009/12

/virus-scanners-for-virus-authors/

Krebs, B. (2010, April 23). Hiding from Anti-Malware Search Bots [Web log post].

Retrieved from http://krebsonsecurity.com/2010/04

/hiding-from-anti-malware-search-bots/

Krutz, R. & Vines, R. (2001). The CISSP Prep Guide. New York, NY: John Wiley &

Sons, Inc.

Langner, R. (2010, September 16). Stuxnet logbook, Sep 16 2010, 1200 hours MESZ

[Web log post]. Retrieved from http://www.langner.com/en/2010/09/16

/stuxnet-logbook-sep-16-2010-1200-hours-mesz/

McAfee (2010). Protecting Your Critical Assets: Lessons Learned from “Operation

Aurora” [White paper]. Retrieved from http://www.wired.com/images_blogs

/threatlevel/2010/03/operationaurora_wp_0310_fnl.pdf

McAfee Labs (2011). McAfee Threats Report: Third Quarter 2011 [White paper].

Retrieved from http://www.mcafee.com/us/resources/reports

/rp-quarterly-threat-q3-2011.pdf

	

	

	

68	

Malware Analyst – Job Description (n.d.). Retrieved January 21, 2012 from

http://zeltser.com/reverse-malware/malware-analyst-job.html

Marrs, T. (2010, September 30). The worm in the centrifuge. Retrieved from

http://www.economist.com/node/17147818

MLE (2011). Getting Started with Basic Malware Analysis [Web log post]. Retrieved

from http://www.zonbi.org/?p=495

National Institute of Justice (2010, November 5). The Computer Forensics Tool Testing

Program. Retrieved from

http://www.nij.gov/topics/forensics/evidence/digital/standards/cftt.htm

NoVirusThanks (2010, July 1). Terms of Service and Privacy Policy. Retrieved from

http://www.novirusthanks.org/terms/

O’Connor, T. (2010, August 15). In Privacy and Information Operations, MegaLinks in

Criminal Justice. Retrieved from http://drtomoconnor.com/3100/3100lect03b.htm

O’Connor, T. (2010, November 7). In Malware, AdWare, RiskWare, & Spam, Megalinks

in Criminal Justice. Retrieved from

http://www.drtomoconnor.com/3100/3100lect07a.htm

O’Connor, T. (2011, July 6). In Counterintelligence, Megalinks in Criminal Justice.

Retrieved from http://www.drtomoconnor.com/4125/4125lect03a.htm

Ollman, G. (2011). Automated In-Network Malware Analysis [White Paper]. Retrieved

from http://www.damballa.com/downloads/r_pubs/WP_MalwareVM_pitfalls.pdf

Open Source Initiative (n.d.). Licenses by Name. In Open Source Initiative. Retrieved

February 11, 2012 from http://www.opensource.org/licenses/alphabetical

	

	

	

69	

Open Source Initiative (n.d.). The BSD 3-Clause License. In Open Source Initiative.

Retrieved December 2, 2011 from http://www.opensource.org

/licenses/BSD-3-Clause

Open Source Initiative (n.d.). The Open Source Definition. In Open Source Initiative.

Retrieved February 2, 2011 from http://www.opensource.org/docs/osd

Organization for Economic Cooperation and Development (2008). Malicious Software

(Malware): A Security Threat to the Internet Economy. Retrieved from

http://www.oecd.org/dataoecd/53/34/40724457.pdf

Panda Labs (2011). Panda Labs Quarter Report July – September 2011 [White Paper].

Retrieved from http://press.pandasecurity.com/wp-content/uploads

/2011/10/PandaLabs-Report-Q3-2011.pdf

Panda Labs (2010). Annual Report PandaLabs 2010 [White Paper]. Retrieved from

http://press.pandasecurity.com/wp-content/uploads/2010/05

/PandaLabs-Annual-Report-2010.pdf

Perl2Exe Home Page (n.d.). Retrieved January 8, 2012 from

http://www.indigostar.com/perl2exe.php

Proxy.org (n.d.). Retrieved January 1, 2012 from http://proxy.org

Raymond, E. (2001). The Cathedral and the Bazaar. In O’Reily, T. & Shangraw, S.

[Eds.]. Sebastopol, CA: O’Reily Media, Inc.

Raymond, E. (2004). The Art of UNIX Programming. In Kernighan, B. [Ed.]. Boston,

MA: Pearson Education, Inc.

Regripperplugins Downloads (n.d.). Retrieved January 8, 2012 from

http://code.google.com/p/regripperplugins/downloads/list

	

	

	

70	

Roos, D. (n.d.). How to Leverage an API for Conferencing [Web log post]. Retrieved

February 22, 2012 from http://money.howstuffworks.com

/business-communications/how-to-leverage-an-api-for-conferencing1.htm

Schatz, B. (2007). Digital Evidence: Representation and Assurance (Doctoral thesis,

Queensland University of Technology, Brisbane, Australia). Retrieved from

http://eprints.qut.edu.au/16507/1/Bradley_Schatz_Thesis.pdf

Scientific Working Group on Imaging Technologies (1999, October). Definitions and

Guidelines for the Use of Imaging Technologies in the Criminal Justice System.

Forensic Science Communications, 1(3). Retrieved from http://www.fbi.gov

/about-us/lab/forensic-science-communications/fsc/april1999/swgit1.htm/

Secunia Advisory SA43910 (2011, April 13). Retrieved January 22, 2010 from

http://secunia.com/advisories/43190

Skoudis, E. & Zeltser, L. (2004). Malware: Fighting Malicious Code. Franz, M. [Ed.].

Upper Saddle River, NJ: Prentice Hall PTR.

Strawberry Perl for Windows (n.d.). Retrieved February 18, 2012 from

http://strawberryperl.com/

Stephenson, N. (1999). In the Beginning was the Command Line. Retrieved from

http://www.cryptonomicon.com/beginning.html

Sullivan, S. (2011, October 11).More Info on German State Backdoor: Case R2D2 [Web

log post]. Retrieved from http://www.f-secure.com/weblog

/archives/00002250.html

ThreatExpert (n.d.). Retrieved February 19, 2012 from http://threatexpert.com/

	

	

	

71	

ThreatExpert: Introduction (n.d.). Retrieved February 22, 2012 from

http://www.threatexpert.com/introduction.aspx

Villeneuve, N. (2010, November 12). Koobface: Inside a Crimeware Network. Retrieved

from http://www.infowar-monitor.net/reports/iwm-koobface.pdf

U.S. Census Bureau (2011, October 26). Portable Document Format (PDF). Retrieved

from http://www.census.gov/main/www/pdf.html

U.S. Marine Corps (2000, 5 September). Counterintelligence (MCWP 2-14). Retrieved

from http://www.fas.org/irp/doddir/usmc/mcwp2-14.pdf

VirusTotal FAQ (n.d.). Retrieved December 20, 2011 from

http://www.virustotal.com/faq.html

VirusTotal Search (n.d.). Retrieved December 20, 2011 from

http://www.virustotal.com/search.html

What is a False Negative? (n.d.) Retrieved February 22, 2011 from

http://www.cgisecurity.com/questions/falsenegative.shtml

What is a False Positive? (n.d.). Retrieved February 22, 2011 from

http://www.cgisecurity.com/questions/falsepositive.shtml

Werner, T. (2011, October 18). Federal Trojan's got a "Big Brother" [Web log post].

Retrieved from http://www.securelist.com/en/blog/208193167

/Federal_Trojan_s_got_a_Big_Brother

Winforensicanalysis Downloads (n.d.) Retrieved January 8, 2012 from

http://code.google.com/p/winforensicaanalysis/downloads/list

Zeltser, L. (2010). Introduction to Malware Analysis. SANS Institute. Retrieved from

http://zeltser.com/reverse-malware/intro-to-malware-analysis.pdf

	

	

	

72	

Zeltser, L. (2010, October 9). Free Toolkits for Automating Malware Analysis [Web log].

Retrieved from http://blog.zeltser.com/post/1284687696

/malware-analysis-tool-frameworks

Zeltser,	
 L.	
 (n.d.).	
 Lenny	
 Zeltser	
 on	
 Information	
 Security	
 [Web	
 log].	
 Retrieved	

February	
 11,	
 2012	
 from	
 http://blog.zeltser.com	

	
 	

	

	

	

73	

INDEX	

A	

abstraction errors	
 ...	
 30	

antivirus software	
 ...	
 23,	
 25,	
 52	

heuristic	
 analysis	
 ..	
 23	

signature	
 checking	
 ..	
 23,	
 27,	
 37	

ANUBIS	
 ...	
 32	

API	
 ...	
 10,	
 44,	
 46,	
 47,	
 70	

AV Comparatives Test Results	
 ..	
 22	

B	

BSD 3-Clause license	
 ..	
 3,	
 10,	
 36	

C	

Chaos Computer Club	
 ...	
 32	

command line interface	
 	
 2,	
 8,	
 37,	
 42	

Complexity Problem	
 ...	
 5,	
 36	

Comprehensive Perl Archive Network	
 	
 2	

computer forensics...	
 5,	
 9,	
 11,	
 29	

context triggered piecewise hashing	
 	
 20,	
 67	

counterintelligence	
 ...	
 31	

cryptographic hash	
 	
 8,	
 20,	
 33,	
 38,	
 43,	
 45,	
 46,	
 47	

MD5	
 ..	
 19,	
 20,	
 27,	
 43,	
 45,	
 46	

SHA1	
 ...	
 19,	
 20,	
 27,	
 43,	
 45	

SHA256	
 ...	
 19,	
 20,	
 27,	
 43,	
 45	

cryptographic	
 hash	
 tools	

hashdeep	
 ..	
 20	

md5deep	
 ...	
 20	

md5sum	
 ..	
 20	

sha1deep	
 ..	
 20	

sha1sum	
 ..	
 20	

sha256deep	
 ...	
 20	

sha256sum	
 ..	
 20	

ssdeep	
 ...	
 20,	
 44,	
 45,	
 65	

CWSandbox	
 ..	
 32	

D	

Daubert Test	
 ..	
 28,	
 38,	
 51,	
 52	

Daubert	
 Test	
 criteria	

acceptance	
 ...	
 31	

error	
 rate	
 ..	
 30	

publication	
 ...	
 30	

testing	
 ..	
 29	

debug levels	
 ..	
 42	

F	

false negative tests	
 ..	
 29	

false positive tests	
 ...	
 29	

F-Secure	
 ..	
 22,	
 28,	
 32,	
 33	

I	

information leakage	
 	
 2,	
 37,	
 47,	
 49,	
 52,	
 53	

J	

JoeBox	
 ..	
 32	

Jotti	
 ...	
 32	

K	

Kaspersky	
 ..	
 22,	
 32	

Koobface	
 ..	
 15,	
 16	

L	

Linux	
 ..	
 1,	
 20,	
 39	

logging	
 ..	
 3,	
 7,	
 40,	
 41,	
 42,	
 43	

M	

Mac OS X	
 ..	
 1,	
 3,	
 39	

malware	
 ..	
 1,	
 2,	
 3,	
 4,	
 5,	
 6,	
 7,	
 8,	
 9,	
 11,	
 12,	
 13,	
 14,	
 15,	
 16,	

17,	
 18,	
 19,	
 21,	
 23,	
 24,	
 25,	
 27,	
 28,	
 30,	
 32,	
 33,	
 35,	

36,	
 37,	
 38,	
 39,	
 49,	
 50,	
 51,	
 52,	
 53,	
 65	

analysis	
 	
 6,	
 7,	
 16,	
 19,	
 35,	
 36,	
 37,	
 39,	
 51,	
 52,	
 53	

analysis	
 workflow	
 	
 24,	
 25,	
 37,	
 39,	
 51	

analyst	
 ...	
 2,	
 6,	
 7,	
 34,	
 50,	
 51	

behavioral	
 analysis	
 ...	
 6,	
 17,	
 27	

bot	
 ..	
 13	

botnet	
 ...	
 13,	
 16	

dynamic	
 analysis	
 	
 See	
 behavorial	
 analysis	

malicious	
 mobile	
 code	
 ..	
 12	

rootkit	
 ..	
 12	

static	
 analysis	
 	
 6,	
 17,	
 18,	
 19,	
 24,	
 33,	
 36,	
 39,	
 49	

Trojan	
 horse	
 ..	
 12,	
 13	

virus	
 ...	
 12,	
 23,	
 36	

visual	
 analysis	
 	
 See	
 static	
 analysis	

worm	
 ..	
 12	

N	

NoVirusThanks	
 ..	
 32,	
 33	

O	

open source	
 1,	
 3,	
 7,	
 8,	
 9,	
 10,	
 11,	
 29,	
 30,	
 31,	
 33,	
 34,	
 36,	

38,	
 50,	
 52	

Open Source Definition	
 ...	
 9,	
 10	

Open Source Initiative	
 ..	
 9,	
 10,	
 62	

open source intelligence	
 	
 1,	
 7,	
 33,	
 50	

Operation Aurora	
 ..	
 14	

OSI	
 ..	
 See	
 open	
 source	
 intelligence	

	

	

	

74	

P	

Perl	
 ..	
 2,	
 37,	
 39,	
 42,	
 43,	
 60	

ActivePerl	
 Community	
 Edition	
 	
 39	

Strawberry	
 Perl	
 ...	
 39	

Perl2Exe	
 ..	
 1,	
 69	

plug-­‐in	

ssdeep	
 plug-­‐in	
 ..	
 45	

threatexpert	
 plug-­‐in	
 ..	
 46	

virustotal	
 plug-­‐in	
 ..	
 45,	
 46	

proxy	
 ...	
 3,	
 41,	
 42,	
 47	

SOCKS	
 ..	
 41,	
 43	

Q	

Quantity Problem	
 ..	
 4,	
 5,	
 35	

R	

RegRipper	
 ...	
 1,	
 2,	
 8,	
 11,	
 37,	
 53	

RSA data breach	
 ..	
 2,	
 28,	
 33	

S	

Sample	
 Malware	
 Analysis	
 Workflow	
 	
 26	

SFTT	
 ..	
 1,	
 2,	
 3,	
 6,	
 7,	
 8,	
 9,	
 10,	
 31,	
 33,	
 34,	
 36,	
 37,	
 38,	
 39,	

40,	
 41,	
 42,	
 43,	
 44,	
 45,	
 46,	
 47,	
 48,	
 49,	
 50,	
 51,	
 52,	

53	

SFTT	
 conclusions	
 ..	
 50	

SFTT	
 File	
 Layout	
 ..	
 40	

SFTT	
 limitations	
 ...	
 46	

SFTT	
 recommendations	

automated	
 processing	
 ..	
 48	

implement	
 SFTT	
 ..	
 49	

new	
 SFTT	
 plug-­‐ins	
 ..	
 49	

standardized	
 output	
 formats	
 	
 48	

user	
 interface	
 improvements	
 	
 48	

Stuxnet	
 ...	
 15,	
 36,	
 67	

Suspicious File Triage Tool	
 	
 See	
 SFTT	

T	

ThreatExpert	
 ..	
 32,	
 33,	
 46,	
 52	

tool implementation errors	
 ...	
 30	

V	

virtual machines	
 ..	
 18,	
 37,	
 49	

VirusTotal	
 3,	
 10,	
 23,	
 27,	
 28,	
 32,	
 33,	
 45,	
 46,	
 47,	
 52,	
 63	

X	

XML	
 ..	
 40,	
 42,	
 43,	
 44,	
 48,	
 50	

Z	

ZeuS Trojan	
 ..	
 35	

	

	

	

	

75	

TURNITIN RESULTS

	
 	
 	

	

	

END FLYLEAF PAGE

